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Abstract. A new approach is proposed to general systems possessing SU(I,l)@SU(l, 1) 
dynamical symmetry. On the base of this approach, the quadratic Hahn algebra QH(3) is 
shown to serve as a hidden symmetry (in both quantum and classical pictures) for two 
potentials generalizing the Hartmann and the oscillator ring-shaped potentials. The 
overlap coefficients between wavefunctions in spherical and parabolic (cyhdrical) co- 
ordinates are shown to coincide with Clebsch-Gordan coefficients for SU(1, I) algebra. 

1. Introduction 

Generalized ring-shaped Coulomb and oscillator potentials are describ'ed by the 
Hamiltonians 

H,=HQ-alr+d,lr2(1+cosB)+d,l?(1-cos!3) (1.la) 

Hz = HQ+ wzrz/2+gll(x2+yz) +g21zZ (l.lb) 

where Ho=pzlZ is the free motion Hamiltonian, di and g, are arbitrary positive 
parameters. 

The potentials (1.1) were introduced (among many other ones) in [l] where the 
general problem of finding the potentials admitting the separation of variables in 
several coordinate systems was studied. 

For dl=dz the potential @la) was studied by Hartmann [2] to~describe axial 
symmetric systems like ring-shaped molecules. The Hartmann potential was also 
intensively studied from different points of view in [2-41 and others. The potential 
(1.lb) with gz=O (the so-called-rig-shaped oscillator potential) was studie,d in [5,6]. 
The generalized ring-shaped potentials (1.1) with dl#dz and ggz#O were studied in 

There are a number of reasons for maintaining the permanent interest 01 physicists 

(i) these potentials can be used in quantum chemistry and nuclear physics for 

(ii) these potentials manifest non-trivial hidden symmetry leading to degener- 

C7-91. 

in these potentials: 

describing ring-shaped molecules and deformed nuclei; 

ation of the energy spectrum; 
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(iii) the Schrodmger equation for these potentials admits the separation of 
variables in several coordinate systems, so an interesting problem arises of 
how to overlap the wavefunctions in different systems; 

(iv) the hidden symmetry and degeneration problem for the classical potentials 
(1.1) seems to be non-trivial. 

Note that the problem of hidden symmetry was considered in 13-51 where SU(2) 
algebra (constructed from the dynamical variables of the ring-shaped potentials) was 
chosen to be an appropriate tool. However, the approach based on SU(2), has some 
difficulties. In particular, it is not clear, how to translate this approach from the 
quantum picture into the classical one. 

Another approach to the hidden symmetry problem was proposed in [6, IO]: it was 
shown that the integrals of motion of the Hartmann and ring-shaped potentials form 
quadratic Hahn algebra QH(3) under the commutations. As we show in this paper the 
same QH(3) algebra remains as the hidden symmetry algebra for the generalized 
potentials (1.1). Moreover, this statement is valid also in the classical picture (if one 
replaces the commutators by Poisson brackets). 

Direct calculation of the overlap coefficients (using explicit wavefunctions) for the 
Hartmann and ring-shaped oscillator potentials was carried out in [ll, 121. In [6, IO] it 
was shown that these coefficients can be obtained by a purely algebraic method based 
on established QH(3) symmetry. 

In this paper we obtain the overlap coefficients for the generalized ring-shaped 
potentials (1.1). 

In section 2 we propose a general scheme based on SU(l,l)@SU(l, 1) addition. 
This scheme does not depend on concrete realization of the SU(1,l) generators. We 
formulate the problem of hidden symmetry for the systems admitting such a scheme. 
The hidden symmetry algebra appears to be the Hahn quadratic algebra QH(3), 
whereas the overlap coefficients are nothing else than Clebsch-Gordan coefficients 
(CGC) for the SU(1,I) algebra. 

In section 3 we consider a concrete realization of the abstract scheme leading to 
the oscillator ring-shaped potential (1.lb). 

In section 4 we analyse another realization leading to the generalized Coulomb 
ring-shaped potential (1.1~). 

In section 5 we outline the situation in terms of the classical picture for the 
potentials (1.1). 

Note that in [7,8] SU(1,l) algebra was used as a dynamical symmetry generating 
the spectrum of the Hamiltonians (1.1). In this paper we use SU(1,l) algebra in order 
to construct hidden symmetry algebra QH(3) describing the degeneration of the 
energy levels. 

Recently, Kuznetsov [I31 showed that SU(1,l) algebra plays the crucial role in the 
problems of hidden symmetry and separation of variables for the Laplace-Beltrami 
equations. We adopt some ideas of [13] to describe. the hidden symmetry for the 
Hamiltonians (1.1). However, our approach differs from that of [13]. 

2. Abstract dynamical system related to the SU(I,l)@SU(l, 1) scheme 

Consider mutually commuting SU(1,l) algebras defined by the standard relations 

[A$',A';']=fA$), [A!?,A(:]=2Ag' i=l ,2.  (2.1) 
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Unitary representations of  SU(1, l )  are defined by the value of the Casimir 
operator 

Q=Ai-Ao-A+A-=n(n-l) .  (2.2) 
For the representations of the positive discrete series 0: and 0; we have 

Ag71ni, ui)=(ni+ui)ln,, uJ 

A?Ini,ui)=[ni(ni+2ni-1)]1~2[ni-1,uJ 

Avln,, U,)= [(ni+ l)(ni+2ai)]"2[n,+ 1, U,) 

(2.3) 

where u,>O are the representation's parameters, n,=O, 1,2,. . .. One can construct 
the direct sum of the initial SU(1,l) algebras 

A S )  =AS)  + A S )  A$) =A':) +A':'. (2.4) 
The connected basis In3, u3) is defined by 

(2.5) 
As)[%, aJ=(n3+&3, a3) 

eh, 4 = 4 n 3 - 1 ) l n 3 , , 4  

u3=u1 + e + p  p=0 ,1 ,2  ).... (2.6) 

Given the values U ,  and U,, the parameter u3 can take the discrete set of values 

The Clebsch-Gordan decomposition is written as 
N 

l i ,a3)=c (n,al;N--Pt,~21j,~3)1n,~l)~lN-~,az) (2.7) 
"=O 

where 

N=j+p. (2.8) 
The CGC have been analysed and calcnlated~in many papers (see,.for example [14- 
161). We use an expression for CGC in terms of Hahn polynomials [17] 

where 

(2.10) 

is a normalization factor and 

(2.11) (%)~(2u1+&+2P- 1)(-1)P(-N)p(2~1+&- l)p (%)p  

p ! ( 2 ~ , + 2 ~ + ) ~ ( 2 ~ 1 + 2 ~ 2 -  1 ) (2~ ,+2~2+ N),(k2) ,  W p  = 

is the weight amplitude for the Hahn polynomials 3F2 (. . .;l) of the argument 

p p  = (al + uz+p)(al + Q+P - 1) p=O,l,  ..., N (2.12) 

Now we can formulate the following problem. Consider the system with the 

H = o-~AS) (2.13) 
Hamiltonian 
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where U is some real constant. This means that SU(1, l)@SU(l, l)  serves as 
dynamical symmetry for the Hamiltonian (2.13). Indeed, the operators A$) and Ac:‘ 
are the ladder operators generating the spectrum & = o - ’ ( n , + ~ + a 1 + a z )  of the 
Hamiltonian (2.13). It is clear that the spectrum is degenerated. So one can expect the 
existence of integrals commuting with the Hamiltonian (2.13). In frames of our 
abstract scheme there are two independent integrals commuting with H 

K1= A&” -A&’) (2.14~) 

Kz = Q3 = al(a1- 1) +&(U, - 1) + 2A&1)Ah2) -ApA(4) -A!!)Ap. (2.146) 

We are seeking the hidden symmetry algebra of the system (2.13). By ‘hidden 
symmetry’ we mean some algebra constructed from the integrals Kl, K2. Recall that 
for many well known problems the integrals of motion form a finite-dimensional Lie 
algebra (e.g. O(4) for the Coulomb problem or U(3) for the isotropic oscillator). 

Do the integrals (2.14) form any algebra? The answer is positive, however the 
algebra is nonlinear. To see this let us introduce the third integral 

K3 = [Kl ,  K2] =2(A!!)A‘:‘ -A y)A?). (2.1%) 

Then using commutation relations (2.1) one can easily verify that on the subspace with 
given value E the operators K,, K2, K3 are closed in frames of quadratic algebra under 
the commutations: 

[Kz tK3]=  -2(K1K2+K2K,) +4u&(u:-a,-u:+a2) (2.156) 

[K3, Kl] = - 2G-4K,+ 2e202+ 4(~:- U, +U:- ~ 2 ) .  (2.1%) 

The commutation relations (2.15) define quadratic Hahn algebra QH(3) which was 
introduced and analysed in [6,10,18]. An attractive feature of QH(3) is that all its 
finite-dimensional representations can be easily constructed in analogy with three- 
dimensional Lie algebras. 

The overlaps between eigenstates of the operators K1 and Kz can be expressed in 
terms of Hahn polynomials. On the other hand, for concrete realization (2.14) the 
diagonalization of the operator K1 corresponds to choosing the unconnected basis 
Inl, ul}@lnz,  a3 in the space of the direct sum SU(l,l)$SU(l, l) ,  whereas 
diagonalization of the operator K2 corresponds to choosing the connected basis In3, a3) 
in the same space. So, in the case (2.14) the overlaps between the operators Kl and K2 
coincide with CGC for the SU(1,l) algebra. This explains the appearance of the Hahn 
polynomials in expression (2.9) for the CGC of SU(1,l). 

It is worth mentioning that the algebra QH(3) does not reduce to the SU(1,l) 
algebra because the formulae (2.14) provide only one of many possible realizations of 
QH(3). For example, there is an analogous realization of QH(3) in terms of 
SU(2)$SU(2) generators [18] allowing explanation of the appearance of the Hahn 
polynomials in the expression for the CGC of SU(2). 

So far, we have considered al and u2 as fixed real parameters. For concrete 
problems, both a, and a, may be the eigenvalues of some additional integrals 
commuting with K ,  and K2 as well as with H. In these cases an additional degeneration 
(not related to the SU(l,l)@SU(l, 1) scheme) is possible. 
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3. Generalized ring-shaped oscillator 

Consider the following realization of the SU(1, l )  operators: 

Ah’) + A$’) = wz2/2 

A$*) = i(z8, + 1/2)/2 
where A, =Al+iA2 and w ,  g,, g ,  are some real positive’constants. 

Given the realization (3.1)-(3.2), the Casimir operators are 
Q1=(m2+2g1-1)/4 QZ=g2/2- 3/16 (3.3) 

where m is the azimuthal quantum number, i.e. the eigenvalue of the operator 
.L,= -i(xa,-y&) obviouly commuting with the SU(1, l )  generators (3.1) and (3.2). 

In accordance with the approach of the previous section, iet us choose the 
Hamiltonian to be 
H =  2WAp = -(a:+ a:+ a:)n 

0 2  

2 +-(x’+y2+z2) +g1/(x’+y’)+g2/z2 (3.4) 

The Hamiltonian (3.4) coincides with ( l . l b )  describing the ring-shaped oscillator. 
Using the results of the previous section, we immediately obtain the integrals 

Kl =A&’) -Ah2) = H - H 
(3.5) XY 2 

K2= Q3=L214+g,r2/2(x2+yZ) +g2r2/2zZ-3/16 
where by HIy and H, we denote corresponding generalized oscillator Hamiltonians. 

The representation parameters al and a, are found from (3.3): 

al= (1+[m2+2gl]1n)/2 az=(2+[l+8g2]”2)/4.  (3.6) 
Diagonalization of the operator K1 corresponds to separation of the variables in 

cylindrical coordinates whereas diagonalization of the operator Kz coneiponds to 
separation of the variables in spherical coordinates. According to the results of the 
previous section, we see that the overlaps between the wavefunctions in these 
coordinate systems coincide with the ccc of SU(1, l )  and are given by formulae (2.9). 

The hidden symmetry algebra for the potential of generalized ring-shaped oscil- 
lator coincides with Hahn algebra QH(3) (2.15) where U= 1 / 2 0  and 
~ = 2 0 ( 1 +  [m’+ 2g1]1’2/2 + [ 1 +  8g2]“2/4+ N )  w=o, 1 , 2 , .  . .. (3.7) 

It is interesting to note that the case g2=0 (ring-shaped oscillator [5 .6])  cannot be 
obtained automatically from these results by the simple procedure gz+O. Indeed, for 
g,>O the wavefunctions must obey the natural condition 

*Iz=o=o. 
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However, if g,=O there is no such restriction and in this case the representation 
parameter u2 can take two values: 

a, = (2 k 1)/4. 

So for g2=0 we obtain the spectrum 

=20(u1+u,+N) =w([m’+2g1J~+fi+3/2) f i = 0 , 1 , 2 , .  . .. 
(3.8) 

The formula (3.8) coincides with that describing the spectrum of the ring-shaped 
oscillator [5,6]. 

4. Generalized ring-shaped coulomb potential 

In this section we choose the following realization of the SU(1,l) algebra [3,7,8]: 

1 
Ap=$af+ at- c 1 p  - y z t )  

~ 6 ~ )  +A?) = YV 

A$,) = i(qa,,+ 112) 

where 5 and r ]  are variables and y, cl, c, are real constants. 
The SU(1,l) Casimir operators (2.2) take the values 

Q , = C ~  - 114 Q ~ = c Z -  114. (4.3) 

H = ~ ~ A P )  (4.4) 

Let us take the ‘Hamiltonian’ 

and choose 6 and q to be parabolic coordinates in three-dimensional Euclid space: 
E =  r(l +cos e), 11 = r(1- cos 0). Then the eigenvalue problem 

H q  = a* (4.5) 
is written as 

where dj=ci-m2/4, m is the azimuthal quantum number and A is the ordinary 
Laplace operator. 

Choosing E =  -2y2 we see that the space {@} of the eigenfunction for the 
‘Hamiltonian’ H coincides with the space of the eigenfunctions for generalized ring- 
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shaped Coulomb potential (l.la) where E is its energy eigenvalue. 
Applying the technique of section 2 we obtain two independent integrals 

Kl =A$,”-Ah’) K2=Q3.  (4.7) 

(I+ [m2+4d1,2]1’2)/2. (4.8) 

a/2y=al + a, f N N=O, 1,. . .. (4.9) 

The representations parameters are 

The energy spectrum for the potential (1.10) is obtained from the spectrum of Ai3): 

Taking into account (4.8), we obtain 

a2 
E= - (4.10) 2(M,/2 + M’/2+ 1 + N)’ 

where 

MI,,= (m’+ 4dl,z)’’z. (4.11) 
The energy spectrum (4.10) for the potential (l.la) was obtained (by another method) 
earlier in [19]. 

The hidden symmetry algebra for the potential (l.la) obviously coincides with 
QH(3) (2.15) where U= 1/2y, ~ = a .  

The diagonalization of the operator Kl corresponds to separation of the variables in 
parabolic coordinates (Kl is an analogue of the Runge-Lenz vector [ZO]), whereas 
diagonalization of the operator Kz corresponds to separation of variables in spherical 
coordinates. The overlaps between these functions are given by the formulae (2.9) 
coinciding with the Clebsch-Gordan coefficients of the SU(1,l)  algebra. 

On the other hand, it is well known [20] that for the ordinary Coulomb problem 
(dl = d, = 0) the overlaps between wavefunctions in spherical and parabolic coordi- 
nates coincide with CGC of the SU(2) algebra because the Coulomb potential has 
O(4) =SU(Z)@SU(Z) hidden symmetry. So it is somewhat surprising that for slightly 
different potential (l.la) the overlaps, instead, coincide with the CGC of SU(1,l) 
algebra. The reason is that the complete dynamical algebra for the Coulomb potential 
is 0(4,2) [21]. This algebra includes both SU(Z)@SU(Z) and SU(I,l)@SU(l, 1) 
schemes. As a consequence, the CGC of SU(2) and SU(1,l) algebras coincide for a, 
and a2 being integer or half integer. The anisotropic terms =dl,2 in (1,la) destroy the 
O(4) symmetry, whereas SU(1, l)@SU(l, 1) symmetry is preserved. This leads to the 
expression of the overlaps in terms of the CGC of SU(1,l) algebra. 

5. Some remarks on the classical picture 

The ring-shaped potentials (1.1) in classical mechanics were investigated in [9], 
however, the algebra of the hidden symmetry was not found earlier. 
In this section we only repeat the scheme of section 2 and show that the classical 

hidden symmetry algebra is again QH(3). 
Let us define the classical SU(1,l) algebra by the relations 

(Ao, Ai)=Az (Az,AD)=A, ( A  I ,  A d  = - A D  (5.1) 



4640 A S Zhedanou 

H =  u-’Ai3’= o-’(Ah’) +Ab2’). 

There are two independent integrals 

K~ = ~ p  - A L ~ )  
Kz = Q3 = U: + U: + 2(A&”Ah2’ - A\’)A(2’ -A$”AP’) 

which are constants of the motion: (H,  K,) = ( H ,  Kz) =O. 
It is easily verified that these integrals form the classical va 

(K*, K2) =K3 
(K2, KJ = 4KJ’ + 4 4 a :  - a:) 

(K3, K1) =2K: +4K2- 2cz$ - 4(a:+u3. 

where Ai are classical dynamical variables and (. , .) stands for the Poisson brackets. 
The Casimir element is 

Q=A;-A:-A:=aZ.  (5.2) 
In what follows we consider only the classical analogue of the positive discrete series: 
a’>O, A,>O. 

Introducing two independent SU(1,l) classical algebras with the parameters a, 
and a2 we can define the Hamiltonian 

(5.3) 

(5.4) 

QH(3): 

(5.5) 

(For general questions concerning the relations between quantum and classical 
quadratic algebras like QH(3), see [lS]). 

All the results of section 3 and section 4 can be translated into the classical picture. 
For example, choosing the realization 

1 
Ab’)=-p:+ 4 0  wz214+g2/20z2 

Ah’) +A$’) = wz2/2 (5.7) 
A$’) = zpJ2 

where (px, x )  = (py ,  y )  = bZ, z) = 1, we obtain the integrals for the classical ring- 
shaped oscillator (1-lb). Analogously one can obtain corresponding integrals for the 
(1.1~) potential. 

Thus, the hidden symmetry algebra of the integrals for the classical ring-shaped 
potentials (1.1) coincides with (classical) QH(3). It would be interesting to establish a 
classical sense of the overlaps (CGC) (2.9). 

6. Conclusion 

We have shown that both (1.1~) and (1.16) potentials have the same hiden symmetry 
algebra QH(3). The overlap coefficients between wavefunctions in spherical and 
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cylindrical (parabolic) coordinates coincide with the CGC of SU(1,l) algebra (2.9). 

potentials (1.1). 

having quadratic hidden symmetry [22]. 

In the classical picture the same QH(3) algebra serves as hidden symmetq for the 

It would be interesting to analyse by the proposed method other Hamiltonians 
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